детекторы. Как подружить сцинтиллятор и SiPM / Хабр

[ [ad_1]

Все началось с того, что коллега на работе попросил мне помочь запустить сцинтилляционный счетчик для какого-то натурного эксперимента на борту парохода. Принес мне завернутый со всех сторон в фольгу монокристалл BGO — цилиндрическую шайбу размером 40х15 мм, и кремниевый ФЭУ типа MicroFC 60035, и сказал, что ничего не работает. В том виде, как это было собрано у него, он в принципе давал импульсы. Но в среднем раз в секунду, что для сцинтилляционного детектора с немаленьким кристаллом как-то совсем слабо. И на поднесение источника в 50 кБк цезия-137 он не реагировал в принципе. Как и вообще на что-то мягче кобальта-60. И с этим надо было что-то сделать.

Итак, начнем.

Выбор материала

Вспомнив опыт со своим сцинтилляционным радиометром, я сразу сказал: BGO здесь едва ли будет работать. Детектор от Atom Fast 8850 начинает надежно «видеть» гамма-кванты от 30 кэВ, а BGO имеет сцинтилляционную эффективность раз в десять хуже. Добавим сюда упавшую в разы эффективность светосбора из-за больших поперечных размеров шайбы по отношению к детектору, огромный показатель преломления BGO и конструкцию детектора, сделанную на тяп-ляп, вот и получаем порог в районе 0,5-0,6 МэВ. Его можно снизить до 150-200 кэВ при должном старании, но не более. Ищи, говорю, цезий-йод. Тем временем разобрал конструкцию, оттер SiPM от вазелинового масла, припаял поаккуратнее проводочки из МГТФа к его контактным площадкам и убрал его в надежное место…

И подходящий кристалл CsI(Tl) нашелся, причем очень удачной для SiPM геометрии. «Палочка» диаметром 20 мм и длиной 80 мм во вполне стандартном алюминиевом корпусе с окном. Тип СДН.25.20.80, «Для регистрации». Правда, нашелся он на «Авито», у широко известного в узких кругах украинского продавца. И вот прошло десять дней и сцинтиллятор уже лежал на моем столе. Кристалл, надо сказать, большого доверия не внушал: внутри имелась прослойка включений в виде нескольких черных точек и легкой вуали, окно немного отстало от кристалла по краям. Но по крайней мере, целый, не мутный, не желтый, да и другого все равно нет. Будем работать с ним.

Тут нужно пояснение, почему именно CsI(Tl), а не его «старший брат» NaI(Tl). Дело в том, что последний очень чувствителен к перепадам температуры и даже слабым ударам, приводящим к растрескиванию. CsI — материал, обладающий определенной степенью пластичности и при небольших механических нагрузках не трескается, а деформируется. Также CsI(Tl) позволяет себя «раздеть» и переупаковать без сухой камеры с инертной атмосферой, тогда как NaI(Tl) настолько гигроскопичен, что покрывается росой и начинает расплываться уже через пару минут нахождения на воздухе. В нашем случае необходимости в переупаковке не было — корпус детектора был вполне исправен и герметичен, а ручаться за герметичность самодельного контейнера я б не стал.

Первая проба

Для начала решил на скорую руку приложить к кристаллу SiPM даже без всякой оптической смазки между ним и окном — чтобы не пачкать лишний раз. Заклеил алюминиевым скотчем и черной изолентой от внешней засветки, подключил к лабораторному БП через нагрузочное сопротивление 2,2 кОм, подключил к нему щуп осциллографа… Мнда, негусто. Конечно, небо и земля по сравнению с BGO, но сигнал от Am-241 (59 кэВ) — около 8-10 мВ при 29,5 В. При этом засинхронизироваться от этих импульсов очень трудно: шумовые импульсы, обусловленные темновыми фотоэлектронами, лишь немного меньше полезного сигнала.

Ну что ж, для начала попробуем сделать, как положено. Заодно оценим, насколько нужны те или иные ухищрения.

Соединяем Si-ФЭУ и сцинтиллятор грамотно

Тут надо начать с того, что сам кремниевый ФЭУ — крохотный по сравнению с его вакуумным аналогом. Размеры его входного окна — всего 6х6 мм. И даже наш невеликий кристалл имеет площадь выходного окна в 8,7 раза больше. Обычно ФЭУ подбирают с диаметром фотокатода, совпадающим или почти совпадающим с диаметром сцинтиллятора, именно в таком случае светосбор наиболее эффективен и, что особенно важно для гамма-спектрометрии, не зависит от расположения источника света (вспышки сцинтилляции) в пространстве. В нашем же случае пришлось бы поставить мозаику как минимум из четырех кремниевых ФЭУ, что в бюджет не влезало с учетом того, что уже пришлось купить кристалл (да — нам, ученым, иногда приходится покупать кое-что для работы из своего кармана). Спектрометрия нам тоже не требовалась, и оставалось надеяться на то, что собранного света окажется достаточно.

Как мы можем оптимизировать светосбор в нашем случае? Если не распаковывать кристалл, у нас возможностей немного. И мы ими воспользуемся.

Какие это возможности? Во-первых, мы должны устранить воздушную прослойку между кристаллом и ФЭУ. Как вы думаете, сколько излучения теряется при ее наличии? Казалось бы, немного. Коэффициент отражения на границе стекло-воздух равно ~ 4%, и можно ожидать, что потеряем мы лишь 8% света. Но это было бы верно, если бы все излучение падало бы на фотокатод перпендикулярно. Но это не так: из сцинтиллятора свет выходит под всеми углами. И при наличии прослойки часть света просто не покидает кристалл из-за полного внутреннего отражения, а излучение внутри «конуса выхода» тоже частично отражается внутрь кристалла, и чем больше угол, тем сильнее.

Для устранения воздушной прослойки кристалл и фотоприемник соединяют с помощью прозрачной оптической смазки или клея, показатель преломления которой максимально близок к показателям преломления окон кристалла и ФЭУ. В качестве смазки можно использовать прозрачное вазелиновое или силиконовое масло, винилин. Существуют также специальные оптические контактные смазки наподобие тех, что производят компании Alpha Spectra Inc и Saint Gobain (BC-631). Для приклейки применимы прозрачные силиконовые и эпоксидные компаунды. С успехом можно использовать OCA — листовой оптический клей вроде двустороннего скотча, предназначенный для приклейки сенсора к дисплеям смартфонов. Этот материал продается во всех магазинах запчастей для их ремонта и стоит несколько десятков рублей за кусок, вырезанный по форме дисплея.

Второе, что нужно сделать — это закрыть все пути утечки света из кристалла. И худшее, что здесь можно сделать — это поддаться соблазну решить все по-простому и заклеить окно алюминиевым скотчем.

Дело в том, что голый алюминий отражает только 85-88% света. Отражательная способность алюминиевого скотча со стороны клея — еще ниже, не более 60-70%. Учитывая то, что свет будет несколько раз переотражаться туда-сюда внутри кристалла, пока не попадет на фотоприемник, это очень плохие цифры. Существует ряд материалов с очень высоким коэффициентом диффузного отражения, превышающим 95% — многослойные пластиковые пленки, синтетическая бумага Tyvek и др. Тем не менее, наиболее доступным и весьма эффективным отражателем является обыкновенная сантехническая ФУМ-лента белого цвета в несколько (4-6) слоев , покрытая сверху алюминиевой фольгой, что дает коэффициент отражения примерно 95%. SensL рекомендует [1] для изготовления сцинтилляционных детекторов на основе SiPM именно ее. «Культурный» аналог производства Saint Gobain Crystals называется BC-642 Teflon Tape.

Кто сказал «фокон»?

Фокон — это сокращение от «фокусирующего конуса». Идея в том, что свет падает на конический или параболический рефлектор, концентрирующий свет с большой входной площадки на маленькую выходную. И такое решение действительно часто применяют в сцинтилляционных детекторах, чтобы сопрячь кристалл с ФЭУ меньшего диаметра. Но работает это решение весьма спорно.

Дело в том, что чем больше отношение входной площади фокона к выходной, тем уже конус, из которого фокон собирает свет. Свет, падающий под углом больше критического, отражается обратно. А сцинтиллятор светит во все стороны, и ограничивая угол сбора света, мы теряем его часть, так что обмануть природу не получится. В статье [2] показано, что фоконное сопряжение не дает ничего ни для эффективности светосбора, ни для спектрального разрешения при аналогичном нашему соотношении размеров кристалла и сборки из SiPM (кристалл диаметром 2″ и сборка 2х2 из MicroFC 60035).

Сборка детектора

Поскольку наш кристалл находится в стандартном контейнере с кварцевым окном в торце, нам не нужно заботиться о светоотражающем покрытии всего кристалла. Им нужно закрыть его торец, оставив в покрытии квадратное окошко по размерам SiPM, то есть 7х7 мм. Всю остальную площадь окна нужно закрыть полосками ФУМ-ленты в 5-6 слоев. Затем из алюминиевого скотча вырезать круг диаметром около 50 мм, в его центре прорезать макетным ножом такое же квадратное отверстие и наклеить его поверх ФУМ-ленты, чтобы отверстия совпали. Теперь аккуратно заворачиваем его края на цилиндрическую поверхность корпуса, максимально тщательно разглаживая и разравнивая складки, через которые может проникать свет.

В свободный от ФУМ-ленты и фольги квадратик вклеиваем SiPM с помощью квадратика, вырезанного под его размер из OCA-пленки. Сверху на него наклеиваем кусочек каптоновой пленки, чтобы не замкнуть выводы кремниевого ФЭУ фольгой, а затем заклеиваем сверху кружком из алюминиевого скотча для защиты попадания света, пропустив провода от SiPM вдоль цилиндрической поверхности кристалла и оборачиваем боковую поверхность полосой алюминиевого скотча, спрятав под ней некрасивые и могущие пропустить свет складки. Правда, первое включение показало, что этого недостаточно и детектор нормально работает только если прикрыть его от света. Поэтому я закрыл конструкцию еще одним слоем самоклеящейся фольги и пропустил провода под ним в виде петли. В окончательном варианте детектор выглядит вот так.

Результат не заставил себя ждать: амплитуда сигнала от америция возросла более чем вдвое, достигая 20 мВ, что позволяет его уверенно выделять на фоне темнового шума. Вот сколько можно потерять света только из-за того, что пара квадратных сантиметров вокруг сиФЭУ закрыта неидеальным отражателем, и из-за зазора между ним и сцинтиллятором, заполненного воздухом.

Импульсы от америция с детектора, сделанного абы как (слева) и после доработки (справа)
Импульсы от америция с детектора, сделанного абы как (слева) и после доработки (справа)

Показательным является то, что уровень сигнала не меняется заметно при перемещении америциевого источника вдоль кристалла. Это говорит о том, что даже при столь субоптимальном сопряжении кристалла и фэу светосбор остается относительно равномерным.

Ссылки

  1. https://www.onsemi.com/pub/Collateral/AND9774-D.PDF

  2. Kim J., Park K., Hwang J. et al. Efficient design of a ∅2×2 inch NaI(Tl) scintillation detector coupled with a SiPM in an aquatic environment. // Nuclear Engineering and Technology. 2019. V. 51. №4. P.  1091-1097.

  3. Lavelle C.M., Shanks W., Chiang C. Approaches for single channel large area silicon photomultiplier array readout // AIP Advances. 2019. №9. 035123.

[ad_2]

Перейти в источник

0

Автор публикации

не в сети 1 день

admin

500
Комментарии: 4Публикации: 1455Регистрация: 12-02-2020

Похожие статьи

О классах Program и Startup — инициализация ASP.NET приложения. Часть II: IWebHostBuilder и Startup / Хабр

[ [ad_1] Введение Это — продолжение статьи, первая часть которой была опубликована ранее. В той части был рассмотрен процесс инициализации, общий для любого приложения .NET…

0

Что мы в действительности знаем о тёмной материи и чёрных дырах?

[ [ad_1] Художественное изображение представляет небольшие концентрации тёмной материи в галактическом кластере MACSJ 1206. Астрономы измеряли вызванное этим кластером гравитационное линзирование, чтобы получить подробную карту…

0

Разбираем кварцевый генератор и его крохотную интегральную схему / Хабр

[ [ad_1] Кварцевый генератор – важный электронный компонент, обеспечивающий очень точную генерацию тактовой частоты за небольшие деньги. Из-за пьезоэлектрического эффекта его электрические свойства меняются в…

0

Цифровая трансформация офисной печати от зарождения до современных технологий

[ [ad_1] СодержаниеГлава №1. Краткая история зарождения офисной печати1.1. Пионеры1.2. ЭнтузиастыГлава №2. От CapEx к MPS и далее к DaaS2.1. Капитальные расходы (CapEx)2.2. Управляемые сервисы…

0

Ответы

Авторизация
*
*

Забыли пароль?

Регистрация
*
*
*
Генерация пароля